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A more accurate, neural-network-based characterization of the full-scale UH-60A maximum, 
vibratory pitch link loads (MXVPLL) was obtained. The MXVPLL data were taken from the 
NASA/Army UH-60A Airloads Program flight test database. This database includes data from 
level flights, and both simple and "complex" maneuvers. In the present context, a complex 
maneuver was defined as one which involved simultaneous, non-zero aircraft angle-of-bank 
(associated with turns) and aircraft pitch-rate (associated with a pull-up or a push-over). The 
present approach combines physical insight followed by the neural networks application. Since 
existing load factors do not represent the above-defined complex maneuver, a new, combined 
load factor ("present-load-factor") was introduced. A back-propagation type of neural network 
with five inputs and one output was used to characterize the UH·60A MXVPLL. The neural 
network inputs were as follows: rotor advance ratio, aircraft gross weight, rotor RPM, air 
density ratio, and the present-load-factor. The neural network output was the maximum, 
vibratory pitch link load (MXVPLL). It was shown that a more accurate characterization of the 
full-scale flight test pitch link loads can be obtained by combining physical insight with a 
neural-network-based approach. 

Introduction 

Helicopter rotor blade pitch link loads undergo large 
changes in magnitude due to varying flight conditions 
that range from the relatively benign level flight 
conditions to the more severe maneuver conditions 
(Refs. I and 2). Also, a typical rotor blade pitch link 
operates in a highly dynamic environment. Thus, the 
test pitch link load has associated with it a greater 
degree of uncertainty (Ref. 3). Analytical prediction 
of pitch link loads is thus difficult (Refs. I and 2), arx:I 
methods that are more accurate than those currently 
available are highly desirable. 

In Ref. 4, neural networks were used to model SH-60B 
pitch link loads. Apparently, no attempt was made in 
Ref. 4 to combine physical insight with the 
application of neural networks. 

The present study attempts, first, to obtain physical 
insight, and second, to efficiently apply neural 
networks in order to characterize (model) helicopter 
rotor blade pitch link loads. The present neural
network-based approach accurately models rotorcraft 
pitch link loads and includes level flight and maneuver 

conditions data. The NASNArmy UH-60A Airloads 
Program flight test database (Refs. 5 and 6) was used 
in the present study. The present study uses the 
experience gained from the earlier neural-network-based 
studies conducted in the ArmylNASA Rotorcraft 
Division at NASA Ames (Refs. 7 to 12). Neural 
networks have been successfully applied to rotorcraft 
aeromechanics problems (Ref. 7). These 
aeromechanics problems have included first, 
identification and control of rotor noise and hub loads 
(Refs. 8 to 11), and second, validation of tilt-rotor 
performance test data (Ref. 12). The test data 
validation study included the following: data 
representation, data quality assessment, and outdoor 
hover data wind-corrections formulation arx:I 
implementation (Ref. 12). Overall, neural networks 
were found to be very useful in solving aeromechanics 
problems (Ref. 7). 

References 7 and 12 showed that tilt-rotor wind tunnel 
test pitch link loads can be accurately modeled using 
the back-propagation type of neural network. In the 
preceding application of neural networks, the neural 
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network inputs were the rotor shaft angle, the rotor 
advance ratio, and the rotor thrust coefficient. TIle 
neural network output was the oscillatory pitch link 
load. 

References 7 and 12 also considered wind corrections 
procedures for correcting outdoor hover tilt-rotor 
performance test data. It was found that a neural
network-based procedure, based on a well-trained neural 
network, captured physical trends in the test data that 
had been missed by the existing, momentum-theory
based method. 

Present Physics-Based 
Neural Network Approach 

In the present approach, emphasis was placed on 
understanding the basic physics underlying helicopter 
rotor pitch link load variations during level flight arxl 
maneuver conditions. Subsequent application of 
neural networks used this fundamental knowledge. 
Pitch link load variations with several parameters were 
plotted so as to determine the important parameters 
that affected the pitch link load significantly (this is 
further discussed in the Results section). A 
"determining-parameter" list with six operating
condition and aircraft-state parameters was used. The 
six parameters were as follows: rotor advance ratio, 
aircraft gross weight, rotor RPM, density ratio, aircraft 
angle-of-bank (roll attitude), and the aircraft pitch-rate. 

Present-Load-Factor 

Using the basic physics of maneuvering aircraft, the 
present study introduced a new, single load factor that 
characterizes above-defined complex maneuvers. This 
load factor is discussed as follows. References 13 and 
14 discuss simple maneuvers in which the aircraft is 
either turning or pitching. For the complex UH-()OA 
maneuvers under consideration (simultaneous non-zero 
angle-of-bank and pitch-rate), the following new load 
factor was derived and used in the present study: 

Present-load-Factor = 
[ 1 / cosine(angle-of-bank) ] ... 
[ 1 + (pitch-rate'" airspeed / g) ] 

(1) 

where "g" is the acceleration due to gravity. Since 
both turning and pitch-rate effects are included in the 
present-load-factor, the number of "determining
parameters" was presently reduced to five from six. 
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The calculation of the present-load-factor for a 
particular complex UH-60A maneuver under 
consideration involved special treatment for the 
helicopter pitch-rate. First, the individual flight test 
time-history of the pitch-rate was obtained using 
TRENDS (Ref. 15) and manually examined. For 
some maneuvers, the flight test pitch-rates varied with 
time. In the present study, a maneuver-specific 
representative-pitch-rate (based on the above flight test 
time-history) was calculated. Specifically, this 
representative-pitch-rate was estimated as follows: i) 
conducting a "reality check" on the pitch-rate sign and 
magnitude that were associated with the specific 
maneuver, and ii) ensuring consistency with the UH-
60A flight test pilot's comments regarding the 
representative g-Ievel encountered during the maneuver. 

Neural Network Details 

The five neural network inputs were as follows: 
advance ratio, gross weight, rotor RPM, density ratio, 
and the present-load-factor (Eq. 1). The neural network 
output was the maximum, vibratory pitch link load, 
MXVPLL. The presently-used back-propagation 
neural network had the same architecture as that used 
in the tilt-rotor performance application of neural 
networks (Ref. 12). The present back-propagation 
neural network architecture was referred to as "5-10-1." 
Here, the 5 and 1 respectively refer to the number of 
neural network inputs and the neural network output, 
and 10 refers to the number of processing elements in 
the neural network hidden layer. 

Results 

Neural Network Training Database 

For present purposes, a portion of the complete UH-
60A Airloads Program database was used The present 
neural network training database consisted only of 
those data points for which the maximum, vibratory 
test pitch link load MXVPLL > 1000 lb. This 
selection procedure resulted in a neural network 
training database consisting of approximately 80 data 
points (which account for both level flight and 
maneuver conditions, simple and complex). A lower 
limit of 1000 Ib was imposed on the pitch link load 
for two reasons. First, data points with pitch link 
loads < 1000 Ib would not really provide additional 
"information" of use in the training of the neural 
network. Second, by excluding the data points with 
maximum, vibratory pitch link load < 1000 Ib, the 
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neural network training database size became smaller. 
A smaller neural network training database not only 
facilitates the physical understanding of the maneuver
pitch-link-load trends, but also makes it easier to train 
the neural networks. Apparently, Ref. 4 did not 
involve any such physics-based considerations. 

Present-Load-Factor 

As an example of the type of functional dependencies 
presently involved, Fig. I, a two-vertical-axes plot, 
shows the variations of the maximum, vibratory pitch 
link load (MXVPLL) and the present-load-factor with 
advance ratio. Figure I shows that the present 
composite load factor, which includes both the angle
of-bank and pitch-rate, has a high maximum value 
associated with it (=: 4) as compared to a conventional 
load factor. 
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Fig. 1 Present-load-factor and pitch link 
load variations with advance ratio 

Pitch Link Load Correlation 

Figure 2 shows the correlation (scatter) plot from the 
above multiple-input, single-output (MISO) 5-10-1 
back-propagation neural network. This correlation 
was considered to be very good. This is due to the fact 
that during a forward flight test condition, the rotor 
blade pitch links are subjected to high dynamic loading 
which is often due to nonlinear aerodynamic blade 
loading. The pitch link loads test data base would thus 
be expected to have an inherently lower level of 
repeatability. That is, the pitch link loads data base 
would have a wider "uncertainty band" due to the pitch 
links operating in an environment that is dynamic. In 
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any case, it has been shown using neural networks that 
the quality of the present pitch link load test data is 
acceptable. Also, it is believed that the present 
physics-based approach using neural networks was able 
to produce a more accurate characterization of the UH-
60A pitch link loads. 

Concluding Remarks 

The present study showed that a physics-based 
approach using neural networks was able to accurately 
predict helicopter pitch link loads during both level 
flight and complex maneuver conditions. 
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Fig. 2 Pitch link load correlation using 
neural networks 
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